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Abstract 
 
This paper presents an axial fan blade design optimization method incorporating a hybrid multi-objective evolutionary algorithm (hy-

brid MOEA). In flow analyses, Reynolds-averaged Navier-Stokes (RANS) equations were solved using the shear stress transport turbu-
lence model. The numerical results for the axial and tangential velocities were validated by comparing them with experimental data. Six 
design variables relating to the blade lean angle and the blade profile were selected through Latin hypercube sampling of design of ex-
periments (DOE) to generate design points within the selected design space. Two objective functions, namely, total efficiency and torque, 
were employed, and multi-objective optimization was carried out, to enhance the performance. A surrogate model, Response Surface 
Approximation (RSA), was constructed for each objective function based on the numerical solutions obtained at the specified design 
points. The Non-dominated Sorting of Genetic Algorithm (NSGA-II) with local search was used for multi-objective optimization. The 
Pareto-optimal solutions were obtained, and a trade-off analysis was performed between the two conflicting objectives in view of the 
design and flow constraints. It was observed that, by the process of multi-objective optimization, the total efficiency was enhanced and 
the torque reduced. The mechanisms of these performance improvements were elucidated by analysis of the Pareto-optimal solutions.  
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1. Introduction 

Recently computing-power advances have rendered numeri-
cal optimization techniques based on three-dimensional Rey-
nolds-averaged Navier-Stokes (RANS) equations practical in 
the design of turbomachinery blades. Application of such 
techniques has reduced the number of experimental tests re-
quired, and thereby has reduced the time and cost entailed, in 
turbomachine design. 

Efficiency and torque are the important parameters in tur-
bomachine performance measurement. Kim et al. [1] have 
reported a design optimization method for enhancing the effi-
ciency of a centrifugal compressor impeller, based on four 
variables defining the design of the impeller hub and shroud 
contours. Efficiency enhancement through modification of the 
diffuser geometry in a mixed-flow pump was reported by Kim 
et al. [2]. Seo et al. [3] introduced design optimization of a 
low-speed axial fan blade with sweep and lean to enhance 
efficiency. Samad et al. [4] studied a multi-objective optimiza-

tion of an axial fan modifying a stacking line of blades, and 
they attempted to enhance the efficiency and total pressure 
and to reduce the torque. 

An optimization procedure for turbomachinery blade design, 
as based on the response surface approximation (RSA) model, 
has been applied by Jang and Kim [5] and Chen and Yuan [6]. 
Several other studies on shape optimization of turbomachinery 
blades have been undertaken, with specific emphases on 
maximum camber [7], camber line [8-9], airfoil thickness [10], 
thickness location [11], trailing edge (TE) radius [12], and 
others. 

Most turbomachinery designs involve multiple performance 
objectives, and as such, are typically referred to as multi-
objective problems. These problems require, for system opti-
mization, simultaneous consideration of all pertinent objective 
functions. The fast and elitist Non-dominated Sorting Genetic 
Algorithm (NSGA-II) of Deb et al. [13] generates a Pareto-
optimal solution using evolutionary algorithms. For optimiza-
tion with the Pareto-optimal design, Keskin and Bestle [14] 
posited Bezier curve parameterization of blade shape. Mar-
javaara et al. [15] employed multi-objective optimization algo-
rithms for shape optimization of a hydraulic turbine diffuser. 
Lotfi et al. [8] reported genetic algorithm (GA)-based optimi-
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zation of a low-speed fan cascade using Bezier-curve-selected 
design variables including thickness distribution and camber 
line. Benini [16] used multi-objective optimization and a 
Bezier curve to define blade-section profiles in consideration 
of the total pressure ratio and adiabatic efficiency, and used 
these as design objectives for an axial compressor blade. He 
employed the camber line and a thickness profile as the design 
parameters. Lastly, Pierret et al. [17] reported multi-
disciplinary and multiple-operating-point optimizations for 
fixed rotor speeds. 

In the present work, a hybrid multi-objective evolutionary 
algorithm (hybrid MOEA) [18] coupled with the RSA model 
was applied to obtain a global Pareto-optimal front for design 
of an axial fan blade. Three-dimensional RANS analyses were 
performed to obtain numerical solutions for the selected de-
sign points. The blade shape was optimized by six design 
variables relating to the blade lean angle and blade profile. 
Two conflicting objectives, that is, the total efficiency and the 
torque, were selected for optimization. 

 
2. Numerical analysis  

Reynolds-averaged Navier-Stokes (RANS) equations were 
solved using the Shear Stress Transport model as turbulence 
closure. The commercial software ANSYS CFX 11.0 [19] 
consisting of Blade-Gen, Turbo-Grid, CFX-Pre and CFX-
Solver applications, was employed in flow analyses. The 
blade profile was generated in Blade-Gen and exported to 
Turbo-Grid for mesh generation. The meshed geometry was 
then imported into CFX-Pre for boundary and initial condition 
definitions, and finally, the model was run in CFX-Solver, 
which solves three-dimensional steady incompressible RANS 
equations. The code uses a finite volume solver that utilizes 
the coupled algebraic multigrid (AMG) method [19]. 

An important issue in turbulence modeling is the formula-
tion of near-wall turbulence, which determines the accuracy of 
the wall shear stress formulation. The shear stress turbulence 
(SST) model is used as a turbulence closure. The SST model, 
having the advantages of both k-ω and k-ε, employs the k-ω 
model at the near-wall and the k-ε model in the bulk flow 
regions, a blending function ensuring a smooth transition be-
tween the two models. Recently, the SST model has been 
regarded among two-equation turbulence closures as the most 
accurate model for aerodynamic applications. 

The computational domain in which the present simulations 
were performed for a single passage of an axial fan is shown 
in Fig. 1. The simulations performed were steady-state, and 
the working substance was 25°C air. The total pressure at the 
inlet was set to 1.0atm, and at the outlet, a designed mass flow 
rate for a single passage was established. The solid surfaces 
were considered to be hydraulically smooth under no-slip and 
adiabatic conditions, the periodic conditions were set at the 
blade passage interfaces, and the tip clearance modeled was 
2.0 mm. The major design specifications are listed in Table 1. 

A hexahedral grid system was employed as the mesh in the 

computational domain. A grid-independency test had been 
carried out to determine the optimal grid number, and a grid of 
630,000 points was selected. Fig. 1 shows the grid system 
structure. 

The solutions are made to converge; among the conver-
gence criteria, the root mean square (RMS) residual values of 
the momentum and mass were set below 1.0E-06, and the 
imbalances of mass and energy were maintained below 1.0E-
03. The converged solutions were obtained after approxi-
mately 500 iterations. The computations were carried out us-
ing a PC with an Intel Pentium IV CPU with a processing 
speed of 3.0 GHz. The computation time according to the 
geometry considered and the rate of convergence was 8-9 
hours. 

 
3. Design variables and objective functions 

Six design variables were selected from among the various 
blade profile parameters affecting axial fan performance. 
These were airfoil maximum camber (α), maximum camber 
location (β), leading edge (LE) radius (γ), TE radius (δ), lean 
angle at mid-span (κ) and lean angle at tip span (ξ). The other 
relevant parameters were kept constant. The blade profile was 
varied by third-order Bezier curve, as shown in Fig. 2(a). The 
main advantage of blade curve parameterization by Bezier 
curves is that a certain limited number of points (the “control 
points”) can be used to control the curves, rendering them 
smooth and free of discontinuities. By moving these control 
points, which are considered as design variables, the blade 
shape can be varied. In the present problem, some of the con-

Table 1. Design specifications of axial fan. 
 

Flow Coefficient 0.41 

Total Pressure Coefficient 0.30 

Rotor Rotation Frequency, rpm 1000 

Tip Radius, mm 287.5 

Number of blades 9 

Hub/Tip Ratio 0.52 

Inlet Angle at Rotor Tip, degrees 68.8 

Outlet Angle at Rotor Tip, degrees 63.8 

 

 
Fig. 1. Computational domain and structure of grid system. 

 



 J.-H. Kim et al. / Journal of Mechanical Science and Technology 24 (10) (2010) 2059~2066 2061 
 

  

trol points were kept fixed so as to reduce the number of de-
sign variables. 

The curve was defined by a third-order polynomial, and the 
control points of the Bezier curve were P1, P2, P3 and P4, P2, 
the thickness control point, was moved to change between the 
design variables α and β. If P2 was moved vertically, the blade 
camber (α) was changed, and if P2 was moved horizontally, 
the location of maximum camber (β) was changed. In this way, 
the blade shape was controlled. A positive sign of α indicated 
an increase of blade thickness, and a similarly positive sign of 
β indicated movement of the maximum thickness location 
towards the TE. The LE and TE radii were varied by moving 
respectively P1 and P4 normal to the chord line, the movement 
being made in such a way that the flow angles did not change. 
An increase in the positive value of γ and/or δ showed an in-
crease of radius. For the blade lean, the blade tip airfoil was 
moved normal to the chord line, yielding one design variable; 
a similar movement of the mid-span airfoil represented an-
other design variable. That is to say, two design variables were 
used for the blade lean: that for airfoil movements at the blade 
tip (ξ) and mid-span (κ). Fig. 2(b) illustrates the pertinent defi-
nitions of blade lean. 

The purpose of this study was to enhance the total efficiency 
and reduce the required torque of an axial fan blade. Accord-
ingly, total efficiency and torque were selected as the per-

formance parameters in the multi-objective optimization. 
These objective functions are defined as follows: 

- Total efficiency, η={(Pt, out-Pt, in)·Q}/(τ·ω). 
- Torque, τ. 

Here, Pt is the total pressure, and the subscripts in and out 
respectively indicate the inlet and exit of the fan. Q is the vol-
ume flow rate, and torque is related to input power (τ·ω) 
through the constant angular velocity (ω) of the blade. These 
objective functions were calculated by solving RANS equa-
tions at the DOE-specified design points, and a hybrid MOEA 
was applied to obtain the global Pareto-optimal solutions. 

 
4. Optimization techniques 

Any multi-objective optimization based on evolutionary al-
gorithms requires many evaluations of objective functions in 
searching for Pareto-optimal solutions. Therefore, to evaluate 
these objective-function values, surrogate-based approxima-
tion was utilized, which minimized numerical or experimental 
expense and saved time. Queipo et al. [20] having suggested 
the application of various surrogate models, including second-
order polynomial approximation, RSA [21] was used in the 
present study to evaluate the objective function values at the 
required design sites. RSA is a methodology of fitting a poly-
nomial function for discrete responses obtained from numeri-
cal calculations. It reflects the association between response 
functions and design variables. The constructed second-order 
polynomial response can be expressed as 

 
2

0
1 1

( )
N N N

j j jj j ij i j
j j i j

f x x x x xβ β β β
= = ≠

= + + +∑ ∑ ∑∑     (1) 

 
Here, β represents regression analysis coefficients, and x indi-
cates a set of design variables. The multi-objective optimiza-
tion problem is formulated as  
 

Minimize  ( )f x  (M functions to be optimized) 
Subject to  ( ) 0g x ≤  (s inequality constraints) 
          ( ) 0h x =  (t equality constraints) 

 
where 1 2 3( ) { ( ), ( ), ( ),........ ( )}Mf x f x f x f x f x=  is a vector of M 
real-valued objective functions and x is a vector of N design 
variables. Thus, Nx R∈ , 5( )g x R∈ , and ( ) th x R∈ . In the 
present problem, there are two conflicting objectives, by 
which improvement of one objective leads to impairment of 
the other. Each feasible solution set x  of the multi-objective 
problem is either dominated or non-dominated; all non-
dominated solutions are called Pareto-optimal solutions. The 
vector ix  dominates a vector jx  if ix  is at least as good as 

jx  for all objectives and if ix  is strictly better than jx  for at 
least one objective. 

Objective functions are defined mathematically and evalu-
ated on the experimental data by numerical simulation. A 
hybrid, multi-objective and evolutionary approach is used to 
obtain global Pareto-optimal solutions. In this method, first, 

 
(a) Blade thickness and radius 

 

(b) Blade lean 
 
Fig. 2. Definitions of design variables. 
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approximate Pareto-optimal solutions are obtained using the 
real-coded NSGA-II developed by Deb [18] for the two objec-
tive functions, total efficiency and torque. Here, real-coded 
indicates that the crossover and mutations are conducted in 
real space to obtain a response from NSGA-II. The Pareto-
optimal solutions are then refined by searching for a local 
optimal solution for each objective function over all NSGA-II-
derived optimal solutions; the search uses Sequential Quad-
ratic Programming (SQP) [22] with NSGA-II solutions as 
initial guesses. SQP is a generalization of Newton’s method, 
which is a gradient-based optimization technique. To perform 
a local search, usually two approaches are applied [18]. In one 
approach, all objectives are combined into a single composite 
objective, and the optimum is searched. In the other approach, 
one objective is optimized by treating the others as equality 
constraints, and the process is repeated for all objectives. 

In the present study, the first objective was optimized, and 
the second objective was treated as an equality constraint. The 
local search was repeated for the second objective function by 
treating the first as an equality constraint. This process yielded 
two new sets of optimal solutions, which were then merged 
with the NSGA-II solutions. From these solutions, the domi-
nated solutions were discarded and then the duplicate solu-
tions were removed so as to obtain the global Pareto-optimal 
solutions. Subsequently, the process of local search improved 
the quality of the Pareto-optimal solutions. In order to find 
representative solutions from the Pareto-optimal front, K-
means clustering [23] was performed. This is an iterative al-
ternating fitting process to form a number of specified clusters. 
These representative solutions were then distributed along the 
Pareto-optimal front. 

 
5. Results and discussion 

The numerical results of the flow analysis had been vali-
dated prior to the flow analysis and design optimization. The 
numerical results were validated with the test data from the 
axial fan performance testing [24], and were considered as a 
reference model. Fig. 3 shows the results of the validation for 
distributions of the axial and tangential velocity components. 
The normalized axial and tangential velocity distributions are 
plotted along the normalized spanwise direction. The two 
velocity distributions show good agreement with the test data. 

In design optimization, it is important to find the feasible 
design space, which is formed by ranges of design variables. 
The ranges of design variables, set subject to the experimental 
and design constraints, are listed in Table 2. 

The RSA was trained for both objective functions using the 
RANS-derived solutions at the discrete design points. In the 
RSA method, an analysis of variance (ANOVA) and a regres-
sion analysis, replete with t-statistics [21], are implemented to 
measure the uncertainty in a set of coefficients in a polynomial. 
The values of R2

 and R2
adj for second-order curve-fitting and 

the RMS error for the surrogate model RSA are listed in Table 
3. These values are reliable, according to the 0.9<R2

adj<1.0 

range suggested by Giunta [25] for accurate prediction of the 
response surface model. Leave-one-out cross-validation [20] 
was performed to assess the accuracy of the models. Although 
it is uncertain how well the cross-validation correlated with 
the model accuracy, the estimation of the generalization errors 
was nearly unbiased, as it took into account the cross-
validation of the surrogate at every design point. The estima-
tions of the cross-validation errors are shown in Table 3. 

A real-coded NSGA-II was invoked to obtain well-spread, 
approximate Pareto-optimal solutions with 100 generations 
and 250 populations. The crossover and mutation probabilities 
were set to 0.95 and 0.25, respectively. The crossover and 
mutation parameters were established as 10 and 50, respec-
tively. These parameters were individually adjusted to suit the 
nature of the problem. Fig. 4 shows the global Pareto-optimal 
solutions that were generated by the hybrid MOEA through 
the RSA model, along with the cluster points. Since the effi-
ciency was maximized and the torque minimized, the obtained 
Pareto-optimal solutions resembled a convex front, and for 
every fixed value of one objective function, there was one 
optimal value of the other objective function. Each extreme 
end of the Pareto-optimal front represents a pair of either the 
lowest values or the highest values of the two objective func-
tions. Since the objective functions are conflicting in nature, 

Table 2. Ranges of design variables. 
 

Variables Lower Upper 

α (mm) -4.0 4.0 

β (mm) -12.0 12.0 

γ (mm) -0.5 1.0 

δ (mm) -0.75 0.5 

κ (deg) -15.06 16.94 

ξ (deg) -6.85 10.15 

 
Table 3. Results of ANOVA and regression analysis. 
 

Objective 
functions R2 R2

adj RMSE 
Cross-

validation 
errors 

η 0.969 0.920 1.03E-3 1.97E-3 

τ 0.999 0.998 3.92E-4 7.15E-4 
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Fig. 3. Validation of flow analysis. 
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the improvement of one objective leads to the impairment of 
the other. Here, it can be seen that no solution out of the 
Pareto-optimal solutions is superior to any other, in either 
objective, since each solution is a global Pareto-optimal solu-
tion. A trade-off analysis showed that a higher efficiency can 
be obtained at the cost of a higher torque, whereas the lower 
torque values are associated with lower values of efficiency. A 
designer can choose any optimal solution that accords with the 
available power that delivered the torque required for driving 
the fluid. 

A greater insight into the relationship between the objective 
function and the design variables was attained by analyzing 
the Pareto-sensitivity of the design variables, which is to say, 
the change in the values of the design variables with the 
change in the objective-function (e.g. total efficiency) values 
along the Pareto-optimal front. Out of the 620 global Pareto-
optimal solutions, 4 clusters, A, B, C and D, were formed to 
find the representative Pareto-optimal solutions, as shown in 
Fig. 4. Fig. 5 illustrates the RSA-predicted Pareto-sensitivity 
of the design variables for those representative Pareto-optimal 
solutions. The Pareto-sensitivity analysis not only revealed the 
effectiveness of the design variables but also determined the 
extremes of the active design space in the Pareto-optimal de-
sign paradigm. The two design variables α and κ showed a 
decreasing trend, whereas the three design variables γ, δ, and ξ 
revealed an increasing trend. However, β was almost constant 
with efficiency. Thus, higher efficiency, in the context of the 
Pareto-optimal designs, was obtained for low values of α and 
κ and high values of γ, δ and ξ. The design variable β showed 

the least sensitivity to objective functions along the Pareto-
optimal front. This design variable, then, can suitably be util-
ized to economize the procedure for multi-variable, multi-
objective and multi-disciplinary design optimizations requir-
ing simultaneous consideration of many design variables and 
many performance objectives. 

The cluster solutions were reproduced by means of a RANS 
analysis, as shown in Table 4. All of the representative opti-
mal designs indicated that there was a significant decrease in 
the torque, though only a relatively small decrease of effi-
ciency was associated with them. In order to determine the 
main factors responsible for the increase in the objective func-
tions, the internal flow fields were compared with the refer-
ence model and the optimal designs A and D. 

Fig. 6 shows the distributions of the torque value at the blade. 
The maximum torque value for solution A was observed near 
the 70% blade span, whereas for the other designs it was 
observed near the 80% span. Designs A and D had lower 
torque values along the blade spans of 20~90% and 20~70%, 
respectively, than did the reference model. However, for the 
blade spans beyond 90%, their torque values were higher. 

Fig. 7 shows the pressure distributions along the blade spans 
of 10%, 50% and 90% for the suction and pressure surfaces in 
the reference model and optimal models A and D. On the 
whole, the pressure distribution in model A, with the lowest 
torque, has the lowest values among the three models. How-
ever, it also had the highest pressure values for blade LE. The 
pressure distribution of the pressure surface in model D was 

Table 4. Results of design optimization. 
 

Design variables MOEA 
prediction 

CFD 
calculation Increment 

Design 
α (mm) β (mm) γ (mm) δ (mm) κ (deg) ξ (deg) τ η τ η τ (%) η (%P)

Reference 0 0 0 0 0 0 - - 0.474 0.8557 - - 

Cluster A 3.51 0.04 0.32 -0.75 16.94 8.46 0.297 0.8193 0.283 0.8051 67.71 ↓ 5.06 ↓ 

Cluster B 1.67 0.04 0.29 -0.75 16.40 10.14 0.342 0.8396 0.332 0.8353 42.93 ↓ 2.04 ↓ 

Cluster C -0.69 0.04 0.36 -0.75 10.94 10.15 0.398 0.8566 0.397 0.8541 19.48 ↓ 0.16 ↓ 

Cluster D -2.30 0.04 0.73 -0.53 9.19 10.15 0.436 0.8629 0.437 0.8613 8.47 ↓ 0.56 ↑ 
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Fig. 4. Pareto-optimal solutions by hybrid MOEA.  Fig. 5. Distributions of design variables over cluster points with total 
 efficiency. 
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entirely more uniform than in the case of the reference model. 
This trend was caused by the variation of the incidence angle 
with the changes of the design variables. 

Fig. 8 shows the streamline distributions on the near-hub 

plane and the blade suction surface for the reference model 
and the optimal models A and D. The reference model had the 
widest recirculation zone at the near-hub and blade suction 
surface, and diagonal streamlines. But the optimal model A 
had almost no separation zone at the suction surface; the opti-
mal model D, moreover, had a smaller separation zone than 
the reference model. Therefore, it is clear that optimized 
shapes have more stable flow fields. 

As discussed above, the optimal designs showed improve-
ment in torque, whereas the total efficiency was increased in 
the optimal model D and decreased in the optimal model A, 
compared with the reference model. It is thought that the de-
sign variables were changed with the variation in the inci-
dence angle (see Fig. 5), resulting in a significant reduction in 
the torque and an equally impressive enhancement of the effi-
ciency. 
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Fig. 6. Comparison of blade torques. 
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Fig. 7. Pressure distributions on blade surfaces. 
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Fig. 8. Streamline distributions on near-hub and blade suction surface.
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6. Conclusions 

Multi-objective optimizations of an axial fan blade were 
achieved by RSA and a GA with a three-dimensional RANS 
analysis. Two conflicting objectives, that is, the total effi-
ciency and the torque, were selected for the design optimiza-
tion. The numerical results were validated with reference to 
experimental data on the distributions of the axial and tangen-
tial velocity components. Six design variables relating to the 
blade lean angle and the blade profile were modified to en-
hance the total efficiency and to reduce the torque. According 
to the Pareto-sensitivity of the design variables, higher effi-
ciency was obtained for high values by LE radius, TE radius 
and lean angle at the tip span. Two optimal designs, at the 
extreme ends of total efficiency and torque in the Pareto-
optimal front, showed that the efficiencies were increased by 
0.56% and decreased by 5.06%, respectively, and that the 
torques were reduced by 8.47% and 67.71%, respectively, in 
comparison with the reference model. Therefore, a designer 
can select, with regard to the reference models and the Pareto-
optimal solutions obtained in this work, trade-off designs that 
are better in both total efficiency and torque. The results show 
that the present optimization method of hybrid MOEA cou-
pled with RANS analysis can be an efficient tool in design 
optimization for total efficiency and torque. 
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Nomenclature------------------------------------------------------------------------ 

M : Number of objective functions 
P1-4 : Control points 
Pin, out : Total pressure at inlet and outlet, respectively 
Q : Volume flow rate 
R2 : Coefficient of multiple determination 
R2

adj : Adjusted value of R2 
RMSE : Root mean square (RMS) error 
Ut : Velocity of rotor tip 
Va, t : Axial and tangential velocity, respectively 
α : Maximum camber 
β : Maximum camber location 
γ : Leading edge (LE) radius 
δ : Trailing edge (TE) radius 
η : Total efficiency 
κ : Lean angle at mid-span 
ξ : Lean angle at tip span 
τ : Torque 
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